Esaki, T., Ohashi, R., Watanabe, R., Natsume-Kitatani, Y., Kawashima, H., Nagao, C., Komura, H., Mizuguchi, K., Constructing an
in silico
three-class predictor of human intestinal absorption with Caco-2 permeability and dried-DMSO solubility.
J. Pharm. Sci.
2019; 108(11):3630-3639.
Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Ohashi, R., Mizuguchi, K., Predicting fraction unbound in human plasma from chemical structure: improved accuracy in the low value ranges.
Mol. Pharm.
2018; 15(11):5302-5311.
Watanabe, R., Esaki, T., Ohashi, R., Kuroda, M., Kawashima, H., Komura, H., Natsume-Kitatani, Y., Mizuguchi, K. Development of an
in silico
prediction model for P-glycoprotein efflux potential in brain capillary endothelial cells towards the prediction of brain penetration.
J. Med. Chem.
2021; 64(5):2725-2738.
Esaki, T., Ohashi, R., Watanabe, R., Natsume-Kitatani, Y., Kawashima, H., Nagao, C., Mizuguchi, K., Computational model to predict the fraction of unbound drug in the brain. J. Chem. Inf. Model. 2019; 59(7):3251-3261.
Esaki, T., Watanabe, R., Kawashima, H., Ohashi, R., Natsume-Kitatani, Y., Nagao, C., Mizuguchi, K., Data curation can improve the prediction accuracy of metabolic intrinsic clearance.
Mol. Inform.
2019; 38(1-2):e1800086.
Watanabe, R., Ohashi, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Mizuguchi, K., Development of an
in silico
prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor.
Sci. Rep.
2019; 9(1):18782.
These prediction models were developed and donated by Fujitsu, Ltd. (Tokyo, Japan).
Yamazoe, Y., Yoshinari, K., Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 3. Difference in substrate specificity of human and rodent CYP1A2 and the refinement of predicting system.
Drug Metab Pharmacokinet.
2019; 34(4):217-232.
Yamazoe, Y., Goto, T., Tohkin, M., Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: solving the modes of the metabolism and inhibition.
Drug. Metab. Pharmacokinet.
2019; 34(2):113-125.
Other references
Moriwaki, H., Tian, Y. S., Kawashita, N., Takagi, T., Mordred: a molecular descriptor calculator.
J. Cheminform.
2018; 10(1):4.
Hinselmann, G., Rosenbaum, L., Jahn, A., Fechner, N., Zell, A., jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints.
J. Cheminform.
2011; 3(1):3.
Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E., The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics.
J. Chem. Inf. Comput. Sci.
2003; 43(2):493-500.
Yap, C. W., PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.
J. Comput. Chem.
2011; 32(7):1466-1474.
Breiman, L., Random Forest.
Machine Learn.
2001; 45(1):5-32.
Protonation calculator was used for the Kp,brain and Kp,uu,brain predictions, Marvin 21.3.0, ChemAxon
(https://www.chemaxon.com)